Tool Calling

Function calling and tool integration with the Responses API

The Responses API supports comprehensive tool calling capabilities, allowing models to call functions, execute tools in parallel, and handle complex multi-step workflows.

Basic Tool Definition

Define tools using the OpenAI function calling format:

const weatherTool = {
  type: 'function' as const,
  name: 'get_weather',
  description: 'Get the current weather in a location',
  strict: null,
  parameters: {
    type: 'object',
    properties: {
      location: {
        type: 'string',
        description: 'The city and state, e.g. San Francisco, CA',
      },
      unit: {
        type: 'string',
        enum: ['celsius', 'fahrenheit'],
      },
    },
    required: ['location'],
  },
};

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'What is the weather in San Francisco?',
          },
        ],
      },
    ],
    tools: [weatherTool],
    tool_choice: 'auto',
    max_output_tokens: 9000,
  }),
});

const result = await response.json();
console.log(result);

Tool Choice Options

Control when and how tools are called:

Tool Choice
Description

auto

Model decides whether to call tools

none

Model will not call any tools

{type: 'function', name: 'tool_name'}

Force specific tool call

Force Specific Tool

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'Hello, how are you?',
          },
        ],
      },
    ],
    tools: [weatherTool],
    tool_choice: { type: 'function', name: 'get_weather' },
    max_output_tokens: 9000,
  }),
});

Disable Tool Calling

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'What is the weather in Paris?',
          },
        ],
      },
    ],
    tools: [weatherTool],
    tool_choice: 'none',
    max_output_tokens: 9000,
  }),
});

Multiple Tools

Define multiple tools for complex workflows:

const calculatorTool = {
  type: 'function' as const,
  name: 'calculate',
  description: 'Perform mathematical calculations',
  strict: null,
  parameters: {
    type: 'object',
    properties: {
      expression: {
        type: 'string',
        description: 'The mathematical expression to evaluate',
      },
    },
    required: ['expression'],
  },
};

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'What is 25 * 4?',
          },
        ],
      },
    ],
    tools: [weatherTool, calculatorTool],
    tool_choice: 'auto',
    max_output_tokens: 9000,
  }),
});

Parallel Tool Calls

The API supports parallel execution of multiple tools:

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'Calculate 10*5 and also tell me the weather in Miami',
          },
        ],
      },
    ],
    tools: [weatherTool, calculatorTool],
    tool_choice: 'auto',
    max_output_tokens: 9000,
  }),
});

const result = await response.json();
console.log(result);

Tool Call Response

When tools are called, the response includes function call information:

{
  'id': 'resp_00a20c9216f71dfd00691ad83eac488190921ba5878cea6955',
  'object': 'response',
  'created_at': 1763366974,
  'status': 'completed',
  'background': False,
  'content_filters': None,
  'error': None,
  'incomplete_details': None,
  'instructions': None,
  'max_output_tokens': 9000,
  'max_tool_calls': None,
  'model': 'gpt-5.1-codex-mini',
  'output': [{
    'id': 'rs_00a20c9216f71dfd00691ad840ca908190bc88e56ed6c76672',
    'type': 'reasoning',
    'summary': []
  }, {
    'id': 'msg_00a20c9216f71dfd00691ad840dda88190ba851bd4524757f8',
    'type': 'message',
    'status': 'completed',
    'content': [{
      'type': 'output_text',
      'annotations': [],
      'logprobs': [],
      'text': 'Hello! I’m doing well, thanks for asking. How can I assist you today?'
    }],
    'role': 'assistant'
  }],
  'parallel_tool_calls': True,
  'previous_response_id': None,
  'prompt_cache_key': None,
  'reasoning': {
    'effort': 'medium',
    'summary': None
  },
  'safety_identifier': None,
  'service_tier': 'default',
  'store': True,
  'temperature': 1.0,
  'text': {
    'format': {
      'type': 'text'
    },
    'verbosity': 'medium'
  },
  'tool_choice': 'none',
  'tools': [{
    'type': 'function',
    'description': 'Get the current weather in a location',
    'name': 'get_weather',
    'parameters': {
      'type': 'object',
      'properties': {
        'location': {
          'type': 'string',
          'description': 'The city and state, e.g. San Francisco, CA'
        },
        'unit': {
          'type': 'string',
          'enum': ['celsius', 'fahrenheit']
        }
      },
      'required': ['location', 'unit'],
      'additionalProperties': False
    },
    'strict': True
  }],
  'top_logprobs': 0,
  'top_p': 1.0,
  'truncation': 'disabled',
  'usage': {
    'input_tokens': 78,
    'input_tokens_details': {
      'cached_tokens': 0
    },
    'output_tokens': 24,
    'output_tokens_details': {
      'reasoning_tokens': 0
    },
    'total_tokens': 102
  },
  'user': None,
  'metadata': {}
}

Tool Responses in Conversation

Include tool responses in follow-up requests:

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'What is the weather in Boston?',
          },
        ],
      },
      {
        type: 'function_call',
        id: 'fc_1',
        call_id: 'call_123',
        name: 'get_weather',
        arguments: JSON.stringify({ location: 'Boston, MA' }),
      },
      {
        type: 'function_call_output',
        id: 'fc_output_1',
        call_id: 'call_123',
        output: JSON.stringify({ temperature: '72°F', condition: 'Sunny' }),
      },
      {
        type: 'message',
        role: 'assistant',
        id: 'msg_abc123',
        status: 'completed',
        content: [
          {
            type: 'output_text',
            text: 'The weather in Boston is currently 72°F and sunny. This looks like perfect weather for a picnic!',
            annotations: []
          }
        ]
      },
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'Is that good weather for a picnic?',
          },
        ],
      },
    ],
    max_output_tokens: 9000,
  }),
});

The `id` field is required for `function_call_output` objects when including tool responses in conversation history.

Streaming Tool Calls

Monitor tool calls in real-time with streaming:

const response = await fetch('https://llm.onerouter.pro/v1/responses', {
  method: 'POST',
  headers: {
    'Authorization': 'Bearer <<API_KEY>>',
    'Content-Type': 'application/json',
  },
  body: JSON.stringify({
    model: 'o4-mini',
    input: [
      {
        type: 'message',
        role: 'user',
        content: [
          {
            type: 'input_text',
            text: 'What is the weather like in Tokyo, Japan? Please check the weather.',
          },
        ],
      },
    ],
    tools: [weatherTool],
    tool_choice: 'auto',
    stream: true,
    max_output_tokens: 9000,
  }),
});

const reader = response.body?.getReader();
const decoder = new TextDecoder();

while (true) {
  const { done, value } = await reader.read();
  if (done) break;

  const chunk = decoder.decode(value);
  const lines = chunk.split('\n');

  for (const line of lines) {
    if (line.startsWith('data: ')) {
      const data = line.slice(6);
      if (data === '[DONE]') return;

      try {
        const parsed = JSON.parse(data);
        if (parsed.type === 'response.output_item.added' &&
            parsed.item?.type === 'function_call') {
          console.log('Function call:', parsed.item.name);
        }
        if (parsed.type === 'response.function_call_arguments.done') {
          console.log('Arguments:', parsed.arguments);
        }
      } catch (e) {
        // Skip invalid JSON
      }
    }
  }
}

Tool Validation

Ensure tool calls have proper structure:

{
  "type": "function_call",
  "id": "fc_abc123",
  "call_id": "call_xyz789",
  "name": "get_weather",
  "arguments": "{\"location\":\"Seattle, WA\"}"
}

Required fields:

  • type: Always "function_call"

  • id: Unique identifier for the function call object

  • name: Function name matching tool definition

  • arguments: Valid JSON string with function parameters

  • call_id: Unique identifier for the call

Best Practices

  1. Clear descriptions: Provide detailed function descriptions and parameter explanations

  2. Proper schemas: Use valid JSON Schema for parameters

  3. Error handling: Handle cases where tools might not be called

  4. Parallel execution: Design tools to work independently when possible

  5. Conversation flow: Include tool responses in follow-up requests for context

Next Steps

  • Explore Reasoning with tools

Reasoning
  • Review Basic Usage fundamentals

Basic Usage

Last updated